Progress in the development of Ternocem A belite ye'elimite ferrite cement

Wolfgang Dienemann. Mohsen Ben Haha

8th International VDZ Congress

September 26 - 28, 2018

Hotel Maritim - Düsseldorf

HEIDELBERGCEMENT

Progress in the development of Ternocem

Formerly known as BCT

Belite Calciumsulfoaluminate Ternesite (BCT) A new low carbon clinker technology

Wolfgang Dienemann, Dirk Schmitt, Frank Bullerjahn, Mohsen Ben Haha

7th International VDZ Congress

September 25 - 27, 2013

VDZ Düsseldorf

1. Background: The CO₂ challenge and alternative binders

- How to (further) reduce CO₂ impact of concrete production?
 - Reduce concrete volumes
 - Reduce clinker content in concrete
 - Use of alternative fuels and raw materials
 - Use of supplementary cementitious materials (SCMs)
 - Alternative binders
- A wide range of alternative binder concepts have been investigated and developed over the past decades
 - Hydrothermal activated binders, Alkali activated systems, Mg-Si binders, etc...

So far no alternative binder approach reached maturity to replace OPC based concrete in substantial volumes

1. Background: Specific CO₂ emission from clinker phases

- Belite cement: only low reduction of CO₂, low reactivity, hard to grind
- Calcium aluminate cement: high burning temperature (ca. 1700°C), low CO₂
- CSA cement: low burning temperature (ca. 1250°C), low CO₂, easy to grind
- Ternocem: low burning temperature 1150 1280°C, low CO₂, easy to grind

Phase Chemical	Phase notation	Synthesis from	g CO ₂ / g phase	% CO ₂	
3CaO·SiO ₂	C ₃ S	Limestone + quartz	0.58	100	
2CaO·SiO ₂	C ₂ S	Limestone + quartz	0.51	88	OPC Belite
3CaO·Al ₂ O ₃	C ₃ A	Limestone + Al-source	0.49	85	
CaO·Al ₂ O ₃	CA	Limestone + Al-source	0.28	48	CAC
4CaO·3Al2O3·SO3	C4A3\$	Limestone + Al-source + anhydrite	0.22	38	CSA
5CaO·2SiO2·SO3	C5S2\$	Limestone + quartz + anhydrite	0.37	64	Ternesite

Ternocem reduces CO₂ emissions by 30%

2. Ternocem clinker technology

Raw materials

- Limestone / marl
- Bauxite
- Iron sources
- SiO₂ sources
- Sulfate sources
- Al-Si bearing minerals
- Pozzolana
- Industrial by-products

Production / Technology

- Production similar to OPC clinker manufacturing
- Lower energy demands in comp. to OPC
 - 1250 -1350 °C
 - Friable clinker
- Lower CO₂ emissions compared to OPC
- SO₂ emission mastered

Cement / Binder

- Based on
 - Ye'elimite $C_4(A_xF_{1-x})_3$ \$
 - Belite C₂S
 - Ferrite C₂(AF)
 - Ternesite
 - Anhydrite / Gypsum C\$·nH₂O
 - Minor phases

2. Ternocem clinker technology: Equilibrium phase composition

Ternesite only stable below 1250°C

2. Ternocem clinker technology: Clinker phase formation

2. Cement performance: Retarder development

- Boron acid / salts are the optimal retarders for Ternocem
- Performance significantly better compared to other known solutions (e.g. organic acids)
 - Combination of retarding microstructure optimization effect
- Similar results for borax and boric acid

2. Cement performance – Effect of retarders

 Ettringite morphology / microstructure identical to pure system when Borax is used

2. Cement performance: Strength development flexibility

- Sulfate level strongly determines early and late strength
- Strength development can be adapted to type of application

3. Concrete technology: Effect of w/c ratio and storage

- Strength not very sensitive to curing (under water / 65 % rH)
- Strength development and its dependence on w/c roughly comparable to CEM I

3. Concrete technology: Workability

- Performance of conventional superplasticizers (SP) similar to OPC concrete
- Ternocem concrete less sensitive to variations in SP dosage
- Open time seems well controlled by retarder

3. Concrete technology: Freeze-thaw & de-icing salt resistance

- Air-entrained concrete has excellent scaling resistance
- Existing air-entraining agents are suitable
- Slab tests and CDF tests give comparable results
- Excellent resistance even for high w/c for all sulfate levels

$$c = 390 \text{ kg/m}^3$$

w/c = 0.43

$$c = 325-350 \text{ kg/m}^3$$

w/c = 0.47-0.53

3. Concrete technology: Carbonation

- Carbonation rates generally higher than OPC cements, comparable to composite cements
- Belite reactivity is important to have a good carbonation resistance
- Carbonation resistance improved by increased curing time or lowered w/c ratio

3. Concrete technology: Chloride ingress

- Migration coefficients within common range
- Significant impact of w/c and curing time / aging
- Chloride profiles different than common concretes under investigation

3. Concrete technology: Shrinkage

- Excellent volume stability at all ages and exposures
- Independent of w/c curing time conditions
- Low risk of cracking

4. Ternocem applications: Concrete field trial, Germany 2014

■ The first concrete slab with Ternocem casted in 2014

- Good workability and good surface finishing
- Acceptable strength levels at 28 days
- Extremely high strength levels beyond

4. Ternocem applications: Concrete field trial, Germany 2014

Strength development

4. Ternocem applications: Railways sleepers production 2016

Key requirements on concrete for pre-stressed sleepers

- Workable for about 30 40 Min.
- High early strength ≥ 30 MPa at 6 h
- Frost resistant

Pilot production

- Abetong, Vislanda, Sweden
- August 2016

Results

- Strength 33,0 MPa at 6h in lab
- In production 32,3 MPa after 9 h (cutting)
- 28 days strength: 58,6 MPa (lab); 61,3 MPa (sleepers)

4. Ternocem applications: Railways sleepers production 2016

■ Good flow and compactable concrete despite low w/c ratios (w/c \triangleq 0.36) used for the production

4. Ternocem applications: Railways sleepers production 2016

- Good finishing surfaces
- No deleterious reactions observed at contact zone to OPC concrete

4. Ternocem applications: ECO-Binder - Test at precast, Italy 2017

- Despite high temperatures (>30°C) slump stable at 21±2 cm over 2 hours
- Open time around 4 hours

Compressive strength reached

- 30 MPa after 20 hours
- 35 MPa after 3 days
- 46 MPa at 28 days

4. Ternocem applications: Pre-cast wall elements, Sweden 2017

- Good workability
- Open time between 1.5 and 2 hours
- Easy finishing

- Compressive strength reached
 - 20 to 23 MPa after 6 hours
 - 30 to 35 MPa after 1 day

4. Ternocem application: Road in Lixhe plant, Belgium 2018

Concreting at -2°C, frost in first nights

4. Ternocem application: Road in Lixhe plant, Belgium 2018

Strength results: 20°C outside

2d (MPa): 34,4 1,2

7d (MPa): 44,5 37,7 28d (MPa): 53,4 53,7

■ 60 m no joints, no cracks

In use since March

Promising characteristics and benefits for building chemistry

More simple "single" binder formulations can be used

Cement (what can be achieved)	BYF - Low sulphate	BYF - High sulphate
Early strength	> 10 MPa after 4 hours > 20 MPa with accelerator	> 15 MPa after 4 hours > 30 MPa with accelerator
Workability time	From 15 to > 120 minutes	From 15 to > 120 minutes

Typical properties

- Formulation of low to zero shrinkage or expansive cements
- Normal to fast setting and high early strength
- Resistance to sulfate attack and against weak acids
- No efflorescence tendency
- Excellent finishing surfaces and abrasion resistance

5. Outlook

The Ternocem technology is in an advanced development stage but still several hurdles need to be overcome before commercialization.

- Mastering of concrete technology workability in various applications
- Establish / optimize durability and long-term performance of concrete
- Technical approval / standardization prerequisite on cement and concrete level
- Market launch, acceptance by customers

Pilot market introduction ongoing in Sweden

